Рукотворный смерч.

Изобретатель о промышленных результатах десятилетия: "Еще не познали, но уже запрягли".

Хотите получить рукотворный смерч? Пристройте сопло по касательной к внутренней поверхности трубы, подключите сопло к заводской пневмосети и ... чудеса начались: один конец трубы обжигает руки, а на поверхности другого - незамедлительно выпадает иней.

Какие чудеса? Циклонные пылеотделители годами работают на тысячах металлургических, цементных, деревообрабатывающих предприятий - очищают воздух, выбрасываемый в атмосферу из технологических зон. В циклоне высокоскоростной вихрь и - никаких чудес, считали все.

Но французский инженер-металлург Ж. Ранк не поверил и "поинтересовался". Оказалось, что в турбулентном смерче самопроизвольно возникает мощный переток тепла от оси к периферии: ядро потока всегда холоднее периферии. Запатентованная Ранком первая вихревая труба - тот же циклон, но реконструированный для получения максимального количества холода в осевой части вихревого потока и, соответственно, тепла - в периферийной.

Разность температур между самыми горячими и самыми холодными слоями в вихревой трубе может быть существенно больше 100'С. И поразительно - эти слои в поле центробежных сил сосуществуют совсем рядом - на расстоянии нескольких миллиметров друг от друга! Температурное разделение смерча ("вихревой эффект") - самое "дешевое" открытие уходящего века, не потребовавшее тысячных коллективов и миллиардных вложений. Дешевое и, как оказалось, многообразное в конструктивных воплощениях и неисчерпаемое в промышленных приложениях.

Первое из воплощений - экологически чистая холодильная машина без подвижных изнашивающихся частей, не использующая парниковые и озоноразрушающие газы (фреоны). Ныне в мировом фонде - первые сотни изобретений, причем больше половины сделаны в России и бывшем СССР.

Открывающееся научно-техническое направление "экспансивно" - сужу по моей практике исследователя, разработчика новых видов продукции. У меня 160 изобретений холодильная техника традиционная и новая - экологически чистая; транспортное машиностроение; техническая акустика и испытательная техника; микронагнетатели с минимальным числом подвижных частей, либо без подвижных частей для работы в невесомости и др. И уже больше половины изобретений и проектов относятся именно к многоцелевой вихревой холодильной технике - абсолютно безынерционным и безотказным в работе, дешевым в производстве, необслуживаемым в эксплуатации воздухоохладителям - для всех отраслей машиностроения, пищевой промышленности и сельского хозяйства, транспорта и испытательной техники.

Мои диссертанты защитили кандидатские диссертации именно по вихревым трубам. Промышленные достижения последних лет в этой же области - вопреки состоянию российской экономики. Область так молода, что многие "не успевают" - все еще считают вихревую трубу лишь лабораторным чудом.

А это не только холодильная машина массового промышленного применения. При исследовании попутно "обнаружено" - вихревую трубу можно так реконструировать, что она станет:

  • элементарным вакуумирующим устройством (до 0,01 ата) дня цветной металлургии;
  • компонентным разделителем для газовой промышленности и производства аммиака;
  • каплеотделителем и осушителем для магистралей сжатого воздуха;
  • источником мощного (до 162 децибел) акустического излучения для испытательной техники и интенсификации технологических процессов;
  • источником труднообъяснимого свечения ядра вихря,
  • а также, кажется, источником рентгеновского излучения, гравитационных аномалий и многого другого - на радость физикам, занимающимся фундаментальными исследованиями.
  • Торнадо в атмосфере, рукотворный смерч в трубе - это многофакторное чудо, как видим, поставившее перед исследователями сотни вопросов на годы вперед. Но мы его уже "запрягли".

    Выделим в нем сначала только "температурную" составляющую - эффект Ранка: даже простейшая вихревая труба, питаемая сжатым воздухом от заводской пневмосети (как дополнительный потребитель, ради которого не нужно приобретать и устанавливать воздушный компрессор!), позволяет получить холодный воздушный поток с температурой от +15 С до -50 С и горячий - с температурой от +50 С до +110 С.

    Естественно, множество заводских технологических задач могут быть успешно решены посредством различных вариантов устройства. Потребовалось "немногое" - доказать это на практике. Перейти от обоснованных ожиданий к реальным промышленно значимым результатам. Нужен был импульс, чтобы начался самоорганизующийся процесс экспансии вихревой техники. Техники "для любого завода", а не только для аэрокосмической промышленности, первой оценившей достоинства вихревых труб.

    Чтобы создать импульс, лет 10...12 назад шестидесяти (!) заводам безвозмездно переданы рабочие чертежи на оригинальные охладители-нагреватели воздуха. И первые партии аппаратов для нужд самих заводов-изготовителей были выпущены в г. Заволжье, Ленинграде (ЦНПО "Ленинец"", ЛМЗ и мн.др.), Вильнюсе, Минске, Улан-Удэ, Новосибирске и др.

    Параллельно этому несколько предприятий наладили серийный выпуск многоцелевых "Микрокондиционеров Азарова": в г. Кириши - с 1986 г., Калуге - с 1988 г., Ростове-на-Дону (два завода) - с 1990 г. и т.д.

    Одно из первых "громких" применений произошло на Заволжском заводе "Автодвигатель". Здесь на грандиозной автоматической линии "Рено-2" (210 единиц оборудования, связанного в безлюдную технологическую цепочку) на все 17 микропроцессорных шкафов управления линией установили мои охладители. И производство головок цилиндра стало действительно безлюдным: несмотря на летнюю жару в цехе, исчезли перегревы электроники, ложные команды ее и брак продукции, простои и ремонты линии. При ничтожных затратах на вихревые охладители годовая производительность линии возросла на 12,67%, что равнозначно дополнительной работе линии в течение 1,5 месяцев в год (при отсутствии указанных выше потерь).

    Ныне число заводов-пользователей на территории бывшего СССР более 500 в 160 городах; в России - более 263 заводов. Процесс только начинается, пользователи распределены неравномерно: Санкт-Петербург - 44 завода; Москва - 48; Волгоград -16; Нижний Новгород -18; Воронеж - 7; Луганск - 6; Запорожье - 8; Киев -8; Ростов-на-Дону -18; Самара -5; Саратов -б; Екатеринбург - 5; Ташкент - 4; Челябинск - 5 ...Латвия - 3; Литва - 3; Эстония - 3... и т.д.

    Из числа российских пользователей 42% заводов приходится на радиоэлектронную промышленность, приборостроение, энергомашиностроение и нефтехимическое машиностроение; 10% - на полиграфию и переработку пластмасс; 10% - на хлебокомбинаты, молочные заводы, кондитерские фабрики, агрофирмы и т.д.

    Восемь лет назад большинство приходилось на все отрасли машиностроения. Ныне вновь появляющиеся пользователи - пищевые и подобные производства: например, в Петербурге АО "Нева", в Нижнем Новгороде хлебозаводы №5 и №11, в Волгограде - Бисквитная фабрика и т.д.

    Иными словами, идет "приземление" научно-изобретательского задела, ранее накопленного нами в аэрокосмической промышленности. Остается сожалеть, что широкая "наземная" апробация вихревого эффекта совпала со временем, когда множество российских предприятий работают в полсилы.

    Вихревые воздухоохладители незаменимы там, где громоздкий, дорогой и требующий квалифицированного обслуживания фреоновый кондиционер поставить немыслимо:

  • в покрасочных камерах и на гальванических участках;
  • в горячих цехах металлургической и цементной промышленности;
  • в хлебопекарной зоне и мн. др.
  • Появление новых технологий с мощными "точечными" тепловыделениями требует "точечных" необслуживаемых генераторов холода, и миниатюрные вихревые трубы - вне конкуренции при экстремальных условиях эксплуатации. Нетрудно предвидеть тот день, когда вихревое холодильное машиностроение станет привычной и важной частью холодильной отрасли - той ее частью, что не зависит от парниковых и озоноразрушающих газов.

    И Россия сможет выполнить международные обязательства по исключению глобального экологического ущерба от холодильной техники. Чтобы приблизить этот день, разработан "Проект А" - новое поколение воздушных микрокондиционеров для промышленности, транспорта, сельского хозяйства. Это 12 изделий холодопроизводительностью от 0,1 до 4,0 кВт, массой от 0,15 до кГ (см. подробнее Web site: http://www.cool.mb.ca/~azarov).

    Изготовитель будет выбран не случайным образом, как раньше, а по конкурсу. Перспектива же такова: вслед за "Проектом А" появятся аппараты, которые впервые не потребуют ни компрессора, ни сжатого воздуха.

    Это будет уже другая глава в истории вихревой техники - глава о массовых переносных кондиционерах для автомобиля и для дома, о "чистых" двигателях, приводимых во вращение при обогреве их поверхности (например, от солнечного концентратора), о "чистой" теплохладоэнергетике будущего.

    Разрабатывая ее, мы с уважением называем трех первых русских исследователей вихревого эффекта: профессоров В.С.Мартыновского, В.П.Алексеева и А.П.Меркулова.