В описываемом опыте были использованы клистронные генераторы радиоволн (с длиной волны в 3 см.) с кварцевой стабилизацией частоты. Генераторы одновременно играли роль и часов и устройства “вспышек света”. Волна, излученная генератором, находящимся в пункте А, принимались радиоприёмником в пункте В и её фаза сравнивалась с фазой волны другого клистронного генератора, расположенного в этом же пункте В. Изменение разности фаз отождествлялось с изменением времени, которое требовалось радиоволне для прохождении одного и того же пути в разное время суток. Для этого волна усиливалась, нормировалась по амплитуде и подавалась на фазовый детектор. Фазовый детектор, а им был смесительный пентод, имел два входа, на один из которых подавалось напряжение от принятых из пункта А радиоволн, а на другой вход – напряжение от второго клистронного генератора, расположенного здесь же в пункте В. Смесительный пентод вырабатывал переменный сигнал, амплитуда и форма которого находилась в прямой зависимости от сдвига фаз переменных напряжений, подаваемых на его оба входа. Этот сигнал направлялся на измерительный конденсатор и заряжал его. Заряд конденсатора производился в течение 7 секунд, затем его отсоединяли от пентода и в последующие 3 секунды производили измерение напряжения на его пластинах и величины разрядного тока, протекающего через строго нормированное сопротивление. После контрольного замыкания пластин конденсатора между собой (полное “обнуление” конденсатора), его снова подсоединяли к пентоду. Запись данных производилась на ленте самописца, на которой делалась отметка времени замера.Все перечисленные выше операции проводились в автоматическом режиме с помощью устройства, вырабатывающего сигналы управления от счетчиков импульсов, подаваемых с кварцевого генератора частоты. Было проведено 4 вида суточных опытов. Первый вид состоял из серии опытов, когда обе установки были расположены в одном месте. Во 2-м виде опытов установки были разнесены друг от друга на расстояние в 300 м. по линии восток – запад; в 3-м – на 750 м; в 4-м – на 1,5 км. В каждом из опытов все замеры проводились непрерывно в течении 24 часов с “шагом” в 10 с. Перед началом каждого опыта, с помощью фозовращателя, добивались минимального значения суммированной амплитуды биений. Переносимый генератор излучал электромагнитные волны с помощью специальной направленной антенны. Другая специальная направленная антенна и приёмник прямого усиления принимали этот сигнал. Они были расположены в базовом пункте, то есть там, где размещался второй генератор, фазовый детектор, измерительная и записывающая аппаратура. Как уже указывалось, измеряемой величиной был усреднённый показатель суммированной амплитуды биений, снимаемый с пентода, выраженный в виде разности потенциалов на пластинах измерительного конденсатора, а так же в величине его разрядного тока.
Эксперимент показал, что измеряемые величины для расстояний в 300 м, 750 м и 1,5 км отличаются друг от друга только периодической суточной динамикой сигнала, имеющей максимумы и минимумы. Количество максимумов и минимумов находились в прямой зависимости от расстояния между установками. Когда клистронные генераторы находились в одном месте, то периодической суточной динамики усреднённого показателя не было, а их максимальная “шумовая” амплитуда составляла примерно 15 – 17% от максимальной амплитуды, когда установки разносились на указанные расстояния. При расстоянии в 300 м. за сутки наблюдалось 187 максимумов, при 750 м. – 467 максимумов, а при 1,5 км. – 933 максимума. В течение суток количество максимумов, приходящихся на единицу времени наблюдения (один час), было разным. Наблюдалось две полуволны с периодом в 12 часов.Время возникновения минимального количества максимумов соответствует зимнему времени суток, имеющему координату прямого восхождения D = 12h ± 1h. Вторая астрономическая координата (склонение) не была определена. Прямо пропорциональная зависимость количества максимумов, насчитываемая за выделенный период времени (12 часов), от увеличения расстояния между генераторами, позволила сделать вывод о том, что наша планета движется в указанном направлении с абсолютной скоростью в 700 ± 50 км/с. Таким образом, опытным путём было доказано, что не только ошибочен принцип постоянства скорости света (она не изотропна), но и подтверждено существование абсолютной системы отсчёта, то есть несостоятельность и самого принципа относительности.
Такое объяснение стало возможным после того, как обнаружили, что перечисленные геофизические процессы более активно протекают только в определённых точках орбиты планеты. Указанное обстоятельство также объясняет некоторые особенности строения Солнечной системы, ранее ускользавшие из поля зрения физиков. К ним относится движение планет по эллиптическим, а не круговым орбитам; нахождение Солнца в одном и том же фокусе для орбит всех планет; аналогичные особенности движения комет и астероидов; и др.
Литература
1.Эйнштейн А. К электродинамике
движущихся тел. Собрание научных трудов. Т.1. М. 1965.
2.Пуанкаре А. Ценность
науки. Сборник “О науке”. М.Наука. 1983.
3. Глушко В.П. Об одновременности
удаленных событий в специальной теории относительности. Тезисы докладов
27 студенческой научной конференции (естественные науки), Казахский ордена
трудового Красного знамени государственный университет им. С. М. Кирова.
Алма-Ата. 1973.
4. Глушко В.П. и др.
Эксперименты по измерению абсолютной скорости движения Земли. 3-я научно-техническая
сессия по проблеме энергетической инверсии (ЭНИН). Тезисы докладов. Москва,
1975.
5. Глушко В.П. и др.
Электрические машины большого космоса. Тезисы докладов международной научно-практической
конференции. Суверенный Казахстан: 10-летний путь развития космических
исследований. Алматы 2001.
6. Глушко В.П. и др.
Геофизические явления и космологический фактор. Материалы научно- практической
конференции. Состояние и перспективы научной и инновационной деятельности
в космической сфере Республики Казахстан. Алматы 2005.
7. Глушко В.В. Новый
подход в изучении свойств пустого космического пространства. Тезисы докладов
международной научно-практической конференции. Суверенный Казахстан: 10-летний
путь развития космических исследований. Алматы 2001.